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Abstract: Little is known about the detection of and preference for multiple simultaneous parallel
axes of symmetry. Neuroscientists have suggested that the detection of symmetry occurs in ex-
trastriate brain areas with large receptive fields. Such large receptive fields may potentially hinder
the simultaneous detection of more than one axis of symmetry. In contrast, psychophysicists have
found that symmetry detection occurs within small spatial windows, allowing for the concurrent
detection of multiple axes of symmetry. Using psychophysical and computational methods, we aim
to test whether multiple axes of symmetry can be detected in parallel and to understand the role of
multiple axes of symmetry on aesthetic valence. Experiment 1 provides evidence that multiple axes
of symmetry cannot be detected simultaneously. However, with relatively long temporal integration,
people can detect them. Experiment 2 suggests that multiple axes of symmetry tend to increase
preference. However, the preference for symmetry is not universal because, although most people
prefer symmetry, others prefer complex images without axes of symmetry. We present and test a
computational model that explains the results of these experiments.

Keywords: symmetry perception; aesthetic preference; processing fluency; temporal integration

1. Introduction

Symmetry is ubiquitous in both nature and art. Although various types of symmetry
exist, humans and animals are particularly sensitive to vertical bilateral symmetry [1–3].
Therefore, not surprisingly, ample research has shown that vertical bilateral symmetry
is a preferred aesthetic feature (see for a review, [4]) and this preference prevails across
cultures, testing contexts, and stimulus types [5]. Thus, finding symmetrical artwork is
commonplace [6], with artists often exhibiting a bias towards including symmetry in their
paintings [7].

To date, most studies on vertical bilateral symmetry and perception have focused on
single axes of symmetry; however, a single image can include many. For example, even
if the façade of a house is not symmetrical, it can have embedded vertically bilaterally
symmetric axes in its windows, doors, and surroundings. Such multiple axes have been
said to implement local symmetry [8]. Can humans detect such multiple axes of symmetry
in parallel or is the detection process serial [9–11]? Wagemans and colleagues showed that
the ability to detect symmetry increases as the number of axes of symmetry grows [8,12].
However, whether people are seeing multiple axes or simply detecting one axis more easily
remains unknown.

Two series of findings raise conflicting answers to this question on symmetry per-
ception. On one hand, the brain regions dedicated to symmetry perception may not be

Symmetry 2023, 15, 1568. https://doi.org/10.3390/sym15081568 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081568
https://doi.org/10.3390/sym15081568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15081568
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081568?type=check_update&version=1


Symmetry 2023, 15, 1568 2 of 23

ideal for the parallel detection of multiple axes of symmetry. For example, Sasaki and
colleagues [13] determined that symmetry activates high-order visual areas (V3A, V4, V7,
and the lateral occipital complex) (see also [14]). Others have determined that the occipital
face area (OFA) responds to the presence of symmetry, even in dot patterns [15,16]. These
brain areas involved in symmetry processing are all extrastriate visual areas [17–19]. In
such areas, receptive fields tend to be large [20,21]. Such large receptive fields may not be
conducive to the parallel detection of multiple axes of symmetry. Large receptive fields
may integrate multiple axes of symmetry together, conflating them. Support to the idea
that multiple axes of symmetry may not be detected in parallel comes from a study of
symmetry and selective attention [22].

On the other hand, large receptive fields are not immediate evidence against the
parallel processing of multiple axes of symmetry. For example, the visual system perceives
multiple faces of people simultaneously. This occurs, despite large face-processing receptive
fields [20]. Moreover, symmetry may not be a property represented in the receptive fields of
single neurons. Instead, symmetry may arise at the level of a neural population [23]. Thus,
a downstream region could possibly detect multiple axes of symmetry metry in parallel
through different readouts from the same population activity. Furthermore, previous
psychophysical studies have shown that the spatial extent required to observe symmetry
may be small in some conditions [24], but see [25]. The defining property of symmetry is
restricted to elements within about ±0.5◦ of the symmetry axis (although the full range
of the skirts of the functions are larger). Hence, psychophysical evidence suggests that
detecting multiple axes of symmetry in parallel seems plausible, given that humans have
close to a 210◦ forward-facing horizontal arc of visual field [26,27]. The first aim of this
study is to elucidate whether humans can detect multiple axes of symmetry with ease.

Another important question related to parallel multiple vertical axes is whether their
number influences aesthetic preference. At the most basic level, one can ask, “if people like
seeing images with one axis of symmetry, would they not like them more with additional
axes?” A reason to suspect that the answer to this question may be positive is the processing
fluency theory [7,28,29]. This theory states that an individual’s aesthetic response to
a stimulus depends on the ease of processing of such a stimulus. If the brain detects
multiple axes of symmetry in parallel, it is performing this computation with ease. Thus,
the processing fluency theory would apply to how the brain detects multiple axes of
symmetry. The second aim of this study is to probe the effect of multiple symmetry axes on
aesthetic preference.

Accordingly, we present the findings of two experiments and a computational model
on multiple axes of symmetry. In our first experiment, we tested whether subjects could
detect two axes of symmetry fluently. We performed the test by asking them to categorize
dot patterns containing one or two embedded symmetry axes at different times of exposure.
Our second experiment used the same stimuli and ones that contained zero axes of sym-
metry. However, instead of identifying the number of symmetry axes, participants picked
the preferred of two different dot patterns. After presenting these experimental results, we
describe a computational model that accounts for the most puzzling aspects of the data.
We test this model with a new, independent experiment.

2. Experiment 1
2.1. Materials and Methods
2.1.1. Participants

Ten participants participated in Experiment 1 on multiple-axes-of-symmetry detec-
tion (6 females, 4 males, aged 18 to 60 years old), each taking approximately 38 min, on
average, to complete the experiment. All participants provided their consent and received
payment for participating. For this experiment, participants were recruited using Prolific
(https://www.prolific.co/ accessed on 12 June 2020), an online participant recruitment
platform. Only participants based in the United States and who had previously indicated

https://www.prolific.co/
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to have normal or corrected-to-normal vision could participate. This and all subsequent
experiments were approved by the Georgetown University Institutional Review Board.

We determined the size of the participant cohort with a power analysis. Cohen’s h is
an appropriate measure of effect size between proportions [30]. We were mostly interested
in the effect size of the difference in proportion correct for the one-second condition. In this
condition, there were 90 observations per participant. To ensure the appropriateness of our
sample size, we calculated the smallest possible h value that we could obtain assuming
α = 0.01 and at 0.9 power, using the “pwr” package in R [31]. With a sample size of
10 participants, the smallest possible h value was 0.13, which was smaller than what was
considered a “small” effect size (though see [32]). Hence, we believed ten participants was
a proper sample size to detect an effect.

2.1.2. Apparatus and Stimuli

We programmed the experiment using the Builder view of PsychoPy3 version 2020.1.0 [33].
The experiment was later uploaded to Pavlovia.org (https://pavlovia.org/) to be dis-
tributed to participants through Prolific. We administered the experiment consent form
and demographic questions through Qualtrics (https://www.qualtrics.com/). Since we
conducted the experiment online, all participants used their own devices to complete the
experiment. The experiment only worked on computers, and not a smartphone or tablet.
Because we could not control the device, we did not have the exact means to measure
the visual angle occupied by the stimuli. However, we could estimate it as follows: if
a subject typically sat 1 m away (as instructed) from a 27” monitor with a resolution of
227 ppi, the stimuli would occupy approximately 4.9 × 3.2 degrees of visual angle. If,
instead, the subject used a 15” laptop with full high definition, the stimuli would occupy
7.8 × 5.1 degrees of visual angle. The JavaScript code for Experiment 1 and all subsequent
experiments can be found here: https://osf.io/xaekp/ accessed on 10 April 2023.

Because our experimental stimuli were different from the ones used in Tyler’s study [24],
we conducted a pilot experiment to test whether our stimuli would produce similar results
(Supplementary Materials). This preliminary study showed that single embedded symme-
try axes could be detected rapidly. Furthermore, as the eccentricity of the embedded axis
increased, detection was more difficult. These results are in accordance with Tyler’s [24]
results and therefore ensure that our stimuli are appropriate for further studies.

For Experiment 1, two types of stimuli were created using the “matplotlib” library of
Python [34]: stimuli with one embedded axis of symmetry and stimuli with two embedded
axes of symmetry. All stimuli had the same size, a resolution of 72 dpi, and contained the
same dot density. They also contained a fixation point in the middle. Figure 1A,B illustrates
the two types of stimuli.
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Figure 1. Stimuli. (A) Example of the stimuli with one embedded axis of symmetry. (B) Example of
the stimuli with two embedded axes of symmetry. (C) Example of the random dot-pattern stimuli.
Masks resembled these latter stimuli, except that masks did not include a fixation point (+).

To generate the stimuli with one embedded axis of symmetry, the whole plot was
divided into 13 separate columns. We selected two consecutive columns randomly to
include the embedded axis, while the rest of the columns contained randomly generated
dots. To create the axis, an algorithm generated random dots in one of the selected columns.
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The subsequent column was populated with a set of dots that were vertically symmetrical
to the adjacent selected column. The stimuli with two embedded axes of symmetry were
created using a similar algorithm. However, this time, two non-touching sets of subsequent
columns were selected to include vertically symmetrical axes. Stimuli with one embedded
axis of symmetry varied in eccentricity. Stimuli with two embedded axes of symmetry
varied in the distance between the two axes (distance), and the distance between the fixation
and middle points between the axes (position). For Experiment 1, we only generated
stimuli with distances 2, 4, and 6 columns away from the fixation point. (If a subject
sat 1 m away from a 27′′ monitor with a resolution of 227 ppi, these distances would be
approximately 1.14◦, 2.28◦, and 3.42◦ degrees of visual angle. If instead the subject used
a 15′′ laptop with full high definition, then the distances would be 1.82◦, 3.64◦, and 5.46◦

degrees of visual angle.) In turn, the positions of the stimuli were 0.5, 1.5, and 2.5 columns.
Masking stimuli were created by generating dots with random abscissas and ordinates
(Figure 1C), constraining the density to be equal. The code used to generate the stimuli for
this experiment and all subsequent experiments can be found here: https://osf.io/xaekp/
accessed on 10 April 2023.

The experiment included 360 stimuli: 180 with 1 embedded axis and 180 with
2 embedded axes (20 for each position and distance combination). Half of the stimuli
were presented for 1 s and half for 300 ms.

2.1.3. Procedure

After providing their consent and answering age and gender demographic questions
on a Qualtrics survey, the participants received a Pavlovia link to perform the experiment.
Before starting, we asked the participants to increase the brightness of their computer
screens to their maxima and sit approximately 1 m away from the screens. Participants
were instructed that they would see a series of images and would be asked to determine
whether these contained one or two axes of symmetry. Subsequently, Experiment 1 included
a training period in which participants received feedback on whether they answered
questions correctly. Each trial of the experiment started with a fixation point in the center
of the screen for 1 s. Then, a stimulus appeared for either 1 s or 300 ms. At the end of
the trial, a random-dot mask appeared, and participants indicated whether the previous
stimulus contained one or two embedded symmetry axes. Figure 2A provides a graphical
representation of the trials. The whole experiment consisted of 366 trials (6 practice trials
and 360 experimental ones). The order of the trials was randomized.

2.1.4. Data Analysis

To test whether participants could detect multiple axes of symmetry, we conducted
exact binomial tests [35]. To test the effects of time, position, and eccentricity on the
detection of multiple axes, we conducted a chi-squared goodness-of-fit test. All data and
tests for this and all subsequent experiments can be found here: https://osf.io/xaekp/
accessed on 10 April 2023.

2.2. Results

The first question that we addressed in this paper was whether people could detect
multiple axes of symmetry rapidly. We also probed the eccentricity dependence of this
putative detection and its dependence on the distance between the axes of symmetry. For
this purpose, we probed how well subjects could discriminate images with one axis of
symmetry from those with two. These axes of symmetry were embedded in random noise
to make the task difficult. Figure 3 displays the results of this experiment for the detection
of multiple axes of symmetry.

https://osf.io/xaekp/
https://osf.io/xaekp/
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durations of viewing. (B) Dependence on the distance between the axes with 1 s presentations.
(C) Dependence on the position of the axes with 1 s presentations. Distances and positions are
measured in terms of columns in our display (see Section 2.1.2 for calibrations in terms of visual
angle). The error bars in (A) represent 95% confidence intervals using an exact binomial test. The
dashed lines in this panel represents chance. In turn, the error bars in (B,C) represent ± 2 standard
errors and the dashed lines represent the expected proportion correct without an effect of eccentricity
or distance effect. Subjects were at chance if the presentation was 300 ms long but were above chance
with 1 s exposures. Eccentricity and distance had no statistically significant effect on performance.

To probe whether people could detect multiple axes of symmetry, we tested different
null hypotheses. The first was that no observer performed better than chance. If we rejected
this null hypothesis, we would show that some observers could detect two symmetry axes.
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Because the hypothesis assumed that all observers were at chance, they formed a single
population whose samples should have behaved as binomial distributions with a success
probability of 0.5. We thus performed exact binomial tests. We detected no difference from
chance when presenting stimuli for 300 ms (first bar in Figure 3A). However, when the
stimuli were presented for 1 s (second bar in Figure 3A), at least some subjects performed
statistically significantly above chance (p < 0.007). We then used a chi-squared test to
confirm that the performance at 1 s was statistically significantly better than at 300 ms
(χ2

1 = 12.3 (with Yate’s continuity correction), p < 0.0005). These results showed that at least
some subjects could distinguish two axes of symmetry from one when the observation time
was long enough. To what degree were these results valid across individuals? To answer
this question, we repeated these tests for each individual separately. When performing
the binomial exact test for being above chance (p < 0.05), only one individual out of ten
passed the probe with 300 ms. In contrast, six individuals out of 10 passed it for 1 s. The
performance was better at 1 s than at 300 ms for all individuals, with the difference being
significant for six out of ten individuals (two-sample binomial test, p < 0.05). Thus, most
subjects could detect multiple axes of symmetry at presentation times of 1 s, but not 300 ms.

Finally, based on a χ2 goodness-of-fit analysis, our results do not suggest an effect
of eccentricity on the detection of multiple axes (Figure 3B). Similarly, our results do not
suggest an effect of distance on this detection (Figure 3C).

2.3. Discussion

The results from Experiment 1 suggest that individuals cannot detect multiple vertical
axes of symmetry with ease, and such detection requires long temporal integration. Thus,
the ability to detect multiple axes of symmetry appears to depend on slower mechanisms.
These slow mechanisms may involve saccades [36] or shifting of attention [37]. This slow
detection of multiple axes of symmetry suggests that if people prefer them to single axes,
then we require an explanation beyond the framework of the processing fluency theory.

3. Experiment 2
3.1. Materials and Methods
3.1.1. Participants

Twenty-five new participants participated in Experiment 2 (13 females, 11 males,
1 other, aged 18 to 58 years old). It took each participant approximately 31 min, on average,
to complete the new experimental procedures. All participants provided their consent to
participate in the experiment and received payment for participating. They were again
recruited using Prolific (accessed on 23 July 2020).

We again determined the size of the participant cohort with a power analysis. For
our second experiment, we were mostly interested in the effect size of the difference in
proportion preferred in the one-versus-two axes condition. In this condition, there were
60 observations per participant. With a sample size of 25, and assuming α = 0.01 and at
0.9 power, the smallest possible observable value for Cohen’s h was 0.1. This value was
again smaller than what was considered a “small” effect size. Hence, we believe that
twenty-five participants is a proper sample size to detect an effect.

3.1.2. Apparatus and Stimuli

Experiment 2 was programmed and distributed in the same way as Experiment 1, and
the same stimuli used in Experiment 1 were used in Experiment 2. Additionally, we used
a third type of stimuli consisting of completely random dot patterns (Figure 1C). For the
stimuli consisting of two embedded symmetry axes, we chose a fixed position (0.5) and
a fixed distance (4). These values corresponded to the highest proportion correct for 1 s
in Experiment 1. These parameters limited the choices of columns that we could select
for the symmetry axes. Thus, the stimuli consisting of one embedded symmetry axis only
included symmetry axes in those columns. Figure 1 shows the three types of stimuli used.
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The experiment included 480 stimuli: 160 random, 160 with 1 embedded axis, and 160
with 2 embedded axes, with each stimulus presented for 1 s.

3.1.3. Procedure

After providing consent, the participants completed the same demographic survey
as in Experiment 1. They then received the same instructions regarding brightness and
distance from the screen. Participants were then instructed that they would see two images
and would be asked to select which one they preferred. Because the questions had no
right answers, Experiment 2 did not include training. However, to allow participants to
acquaint themselves with the experiment, we included a few test trials at the beginning,
not included in the analysis. Each trial of the experiment started with a fixation point at
the center of the screen for 1 s. Then, the 1st image appeared for 1 s, another fixation point
appeared for 1 s, and the 2nd image appeared for 1 s. Participants were asked whether
they preferred the first or second image. Figure 2B shows a graphical representation of a
trial of the procedure seen by the participants. The experiment consisted of 249 trials. They
comprised 9 practice trials, 60 trials of each combination of stimuli (zero vs. one axis, one
vs. two axes, and zero vs. two axes), and 20 trials of pairs of the same stimuli (zero vs. zero,
one vs. one, and two vs. two axes) to ensure that order did not influence preference. The
order of the trials was random and the order of the combinations counterbalanced.

3.1.4. Data Analysis

All analyses were conducted in R Studio (R version 4.0.5). We conducted a series of
exact binomial tests for each possible combination of stimuli [35]. We performed these tests
both at the group and individual levels. Additionally, to test the consistency of responses for
participants, we calculated the Pearson’s correlation coefficients and tested the significance
of the correlation of each combination of conditions (zero vs. one axis, one vs. two axes,
and zero vs. two axes).

3.2. Results

From the results of Experiment 1, we know that people cannot detect multiple axes
of symmetry rapidly. A long-temporal integration window is required for the detection
of these axes. Therefore, if we assume that the processing fluency theory is the main
explanation for aesthetic biases, then we should predict that multiple axes of symmetry
may not make a difference. To test this prediction, we designed Experiment 2 to compare
the aesthetic preferences elicited by one versus two axes of symmetry. The outcome of this
experiment appears in Figure 4.

To understand the participants’ preferences for multiple axes of symmetry, we cal-
culated the number of times they chose the option with the greater number of symmetry
axes. Figure 4A shows the results of these choices. The participants significantly chose
a greater number of axes in the one-versus-two and the zero-versus-two axes conditions
(p = 0.002 and p = 0.007, respectively). However, the zero-versus-one axes condition yielded
no statistically significant difference.

How could seeing two axes of symmetry boost aesthetic preference when seeing one
axis did not elicit preference? To answer this question, we decided to look more closely at
how each participant responded to multiple axes of symmetry in the task. Figure 4B shows
the plot of the difference between the times each participant chose the option with the
greater number of axes instead of the option with fewer axes. The vertical lines represent
the place where that difference would be significant (p < 0.005) in an exact binomial test.
Our results show that out of the 25 people that participated in our study, the difference
is significant for 15 of them. Furthermore, 9 of the participants significantly preferred
a greater number of symmetry axes. In contrast, 6 participants significantly preferred a
reduced number of symmetry axes. These results suggest that, when it comes to preference,
symmetry matters. However, whether symmetry increases or decreases preference appears
to be participant dependent.



Symmetry 2023, 15, 1568 8 of 23

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

3.2. Results 
From the results of Experiment 1, we know that people cannot detect multiple axes 

of symmetry rapidly. A long-temporal integration window is required for the detection of 
these axes. Therefore, if we assume that the processing fluency theory is the main expla-
nation for aesthetic biases, then we should predict that multiple axes of symmetry may 
not make a difference. To test this prediction, we designed Experiment 2 to compare the 
aesthetic preferences elicited by one versus two axes of symmetry. The outcome of this 
experiment appears in Figure 4. 

 
Figure 4. Results of Experiment 2. (A) Exact binomial test results comparing the number of times 
that participants chose the image with the higher number of embedded symmetry axes versus the 
option with fewer axes. This figure is a visual representation of the binomial test because the error 
bars correspond to 95% confidence intervals. Moreover, the dotted lines represent chance preference 
(50%). If the error bars do not overlap with the 50% line, we can reject the null hypothesis that par-
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Figure 4. Results of Experiment 2. (A) Exact binomial test results comparing the number of times
that participants chose the image with the higher number of embedded symmetry axes versus the
option with fewer axes. This figure is a visual representation of the binomial test because the error
bars correspond to 95% confidence intervals. Moreover, the dotted lines represent chance preference
(50%). If the error bars do not overlap with the 50% line, we can reject the null hypothesis that
participants like both images equally. (B–E) Graphical representation of individual differences in
symmetry preference. (B) Pertains to all conditions and (C–E) displays all conditions separately. The
horizontal axis represents the difference in count between the times that the participant selected the
option with more symmetry axes and the times that the participant selected the lesser option. Each
difference bar is for one participant, labeled from 1 to 25. Since the difference relies on the raw counts,
the differences for the combined conditions are greater than for the individual ones. The dotted lines
represent the point where the difference would be significant (p < 0.05) for an exact binomial test.
(F–H) Correlation between the times that the participant chose the option with the largest number of
embedded axes across different conditions. The main conclusion is that two axes of symmetry yield
more aesthetic preferences than one axis.

This split preference for symmetry in the population might help explain why one axis
of symmetry embedded in complex noise did not elicit preference. Perhaps this split was
balanced enough in the population. To test this prediction, we broke Figure 4B into the
difference for each participant for each condition. Figure 4C–E shows the plots for each
condition and participant. As predicted, when judging zero-versus-one axes of symmetry,
7 participants preferred symmetry while 5 preferred not to have symmetry embedded in
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the noise (Figure 4D). These numbers were so close that our sample did not yield evidence
for a population preference for symmetry or for a purely complex random pattern.

Thus, why does preference for symmetry increase when we increase the number
of axes of symmetry (Figure 4A)? Comparing Figure 4D with Figure 4E shows that the
number of people preferring patterns with symmetry increases from 7 to 9 when we increase
the number of axes from 1 to 2. The intensity of preference also increases. In contrast,
the number of people preferring non-symmetry stays constant (5), and the intensity of
preference increases less on average. Hence, our data indicate that more people prefer
symmetry than prefer its absence in a complex random pattern.

We also wanted to test the preference consistency of participants. Thus, we tested
whether those who liked symmetry (or non-symmetry) with one axis still preferred sym-
metry (or non-symmetry) with multiple axes. We calculated the correlations between the
number of times a participant chose the greater number of axes across pairs of conditions
(Figure 4F–H). The results of our Pearson’s correlation tests suggest a strong, positive,
linear correlation between the individuals that chose the greater number of axes. For the
zero-versus-one and one-versus-two axes pair, the statistics were r = 0.94, p < 0.001. For the
zero-versus-one and one-versus-two axes pair, the statistics were r = 0.78, p < 0.001. Lastly,
for the zero-versus-two and one-versus-two axes pair, the statistics were r = 0.8, p < 0.001.
This positive correlation indicated that if participants liked symmetry with one axis, they
preferred symmetry with multiple axes. If participants preferred non-symmetry, they also
preferred non-symmetry with multiple axes.

Lastly, as a control, we checked whether preferences were split 50–50 for equal-num
number-of-axes conditions. Binomial tests indicated that preference was not significantly
different for the first-versus-second images in zero-versus-zero (p > 0.39), one-versus-one
(p > 0.75), and two-versus-two (p > 0.34) controls, suggesting no-order effects.

3.3. Discussion

Our results reveal two main findings for Experiment 2. First, while some people
prefer to see axes of symmetry embedded in the complex random-dot image, others prefer
the opposite (Figure 4B–E). Second, multiple axes of symmetry elicit greater aesthetic
preference on average in the population (Figure 4A,D,E). A possible explanation for the
first finding stems from increases in symmetry or balance reducing the complexities of
images [7,38]. Previous research looking at individual differences in aesthetic preferences
for complexity [39] showed that some participants liked complexity while others disliked
it [7,40,41].

4. A Theoretical Framework for the Detection and Preference of Multiple-Symmetry Axes
4.1. Assumptions

The results of Experiment 1 indicated that seeing two axes of symmetry embedded
in a random-dot pattern takes time. Moreover, the results of Experiment 2 indicated that
people who liked symmetry preferred more of it. Given our results, we hypothesized
that multi-axis preference depended on temporal integration, and thus proposed how to
model it.

The simplest hypothesis for why multiple axes of symmetry increase aesthetic prefer-
ence makes four assumptions:

1. Seeing symmetry is detecting at least one axis of symmetry, and sensing more axes
makes no difference.

2. As the number of axes of symmetry increases, the probability of detecting at least one
of them also increases. Thus, the probability of detecting at least one axis of symmetry
follows probability summation [42].

3. When confronted with a choice between symmetry or complexity, each individual has
a consistent preference for either the former or latter. However, these judgments are
likely influenced by noise, ranging from the nature of the stimuli to decision noise,
and thus are not absolute.
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4. If an individual fails to detect symmetry in the two experimental images, preference
is random.

In Experiment 3, we describe a within-participant procedure designed to test these
theoretical assumptions. In the first part of the experiment, we measure how well observers
can detect axes of symmetry when they have different degrees of noise. We start with
images with just one of these axes. From this measurement, we then test Assumptions 1
and 2 by performing a similar detection experiment; however, presently, with two axes of
symmetry. From our data, we can calculate a psychometric detection curve as a function of
stimulus noise. From Assumptions 1 and 2, we can predict the shape of the detection curve
with two axes from the detection curve with one axis. Then, we use the same stimuli to
probe preference for these images as compared to images with no axes of symmetry. From
Assumptions 3 and 4, we can predict the preference curves from the detection ones.

4.2. Experiment 3—Test of the Assumptions of the Theoretical Framework
4.2.1. Methods

Eleven new subjects participated in Experiment 3 (7 females and 4 males, aged 21 to
50 years old). Each participant completed two sessions and took approximately 60 min,
on average, to complete each session. Participants completed the second session between
24 and 48 h after the first session. All participants provided their consent to participate in
the experiment and received payment for participating. They were again recruited using
Prolific (accessed on 19 January 2022).

For this experiment, we created a variation of the stimuli in Experiments 1 and 2. We
re-created stimuli with one or two symmetrical axes introducing a new noise variable: the
proportion of dots within the axis that were symmetrical. A proportion of zero meant that
all the points in the axis were completely random, and the stimulus was identical to the
random-dot stimuli in Experiment 2. A proportion of 1 meant that all the points in the
axis were symmetrical, analogous to the one- and two-axes stimuli we used in previous
experiments. The proportion of symmetrical dots per symmetry axis in our stimuli varied
linearly from 0.4 to 1 in units of 0.05. This meant that for each type of stimulus (one- and
two-axes), we had 13 different levels of proportion of symmetry. All other variables, such
as the distance and position of the symmetrical axes and the density of the dots, were
identical to those in Experiment 1.

Participants completed this experiment in two sessions. The first session was a prefer-
ence task, like the one in Experiment 2. The second session was a detection task, like the
one in Experiment 1. Each session had 520 trials. Half of them required making a judgment
between random and one-axis stimuli and half of them between random and two-axes
stimuli. We randomized the order of the trials and counterbalanced the presentation of the
stimuli within each trial.

After providing consent, the subjects participated in the first session of the experiment.
First, the participants answered demographic questions and obtained the same instruc-
tions regarding screen brightness and sitting distance as the participants in all previous
experiments. Each trial started with a one-second fixation cross. Then, the participants
saw two stimuli, each for one second (separated by a one-second inter-stimulus interval).
Subsequently, they were asked to use their keyboards to indicate which of the stimuli they
preferred. The second session was analogous to the first session, except the participants
were asked which of the two stimuli contained an axis of symmetry. Importantly, even if
the stimuli contained two axes of symmetry, the participants only had to indicate whether
it contained at least one. This session started with six practice trials (which were excluded
from the analysis), for which participants received direct feedback on whether they an-
swered the questions correctly. All participants completed the two sessions in the same
order to avoid the detection task biasing their preferences.

All our data analyses were conducted in R. We were interested in calculating percent
correct as a function of the proportion of symmetry. For the detection session, for each
condition, we fitted a psychometric curve by calculating the cumulative normal that



Symmetry 2023, 15, 1568 11 of 23

minimized the negative log likelihood using two parameters: a threshold and a sigma. To
obtain the best fit, we used the “optim” function in R. We used the best-fit 75% threshold
and sigma of the psychometric curves to predict the psychometric curves of the preference
session, and we used a chi-squared goodness-of-fit test to assess how our predictions fitted
the data. The equations and details of our predictions are described below (computational
model for testing assumptions of framework).

4.2.2. Results

From the assumptions of the theoretical framework, two main predictions arise: first,
the detection of symmetry in images with multiple axes of symmetry follows probability
summation; second, preference is determined by the detection of at least one axis, such that
detecting more does not matter. Experiment 3 tested these two predictions for different
subjects, thus also probing the effects of their individual abilities to detect symmetry. The
results of this experiment appear in Figure 5, first focusing on detection (panels A–C) and
then on preference (panels D–F).

Figure 5A,B show the detection results for two extreme subjects. While the former
exhibits a detection increase as the degree of symmetry increases, the latter barely changes.
To quantify this difference between subjects, we fitted error functions through the data.
Subjects were considered as not detecting axes of symmetry in our experiments if any of
their error-function thresholds were higher than one. Of our eleven subjects, five could not
detect axes of symmetry. The proportions of subjects who could and could not detect axes
of symmetry were compatible with the results in Figure 4D,E. For the subjects that could
detect axes of symmetry, the detection curves for two axes (green lines) predicted from the
one-axis results (blue) matched closely with what we obtained from the observers (red). To
quantify this match, we plotted the predicted thresholds and sigmas (standard deviations)
against their observed values (Figure 5C). These plots yielded reasonably good linear fits
(r = 0.68 and r = 0.57 for thresholds and sigmas, respectively), which were statistically
indistinguishable from the perfect-match-of-model line. Hence, the fits in panels A–C of
Figure 5 supported Assumptions 1 and 2 of our theoretical framework.

The second part of Experiment 3 tested whether subjects’ preferences matched the
predictions based both on Assumptions 3 and 4 of our theoretical framework, and on
results similar to those presented in Figure 5A,B. Figure 5D,E show the preference results
for two typical subjects. While the former exhibited an increase in preference as the
degree of symmetry increased, the latter showed a decline. The increase was statistically
significant for both one- and two-axes experiments (Pearson’s r = 0.57; p < 0.05 for one axis;
r = −0.80; p < 0.002 for two axis). The decline was also statistically significant for the
one-axis experiment (r = 0.65; p < 0.02). However, although the decline was apparent
for two axes (r = −0.47), it did not cross the statistical threshold. Nevertheless, even for
two axes, in 12 out of the 13 times that the subject made a choice, the pick was for the image
without symmetry. Consequently, this subject strongly preferred complexity over symmetry
(binomial test, p < 0.002). Hence, these results are consistent with subjects preferring either
symmetry or complexity (Assumption 3). As a population, 3 out of the 6 subjects preferred
images with symmetry, whereas 3 preferred complexity. This equal split between subjects
was compatible with the numbers presented in Figure 4D,E.

Another result in Figure 5D,E is that the quantitative predictions based on Assump-
tions 3 and 4 (solid lines) fit the preference data appropriately. A χ2 test using all the
preferences across subjects confirms that the data and predictions are statistically in-
distinguishable. Splitting the χ2 test subject by subject also shows that this indistin-
guishability worked individually (Figure 5F mean p = 0.98± 0.01). These tests suggest
that the relatively large deviations of the model from the data are due to their noise.
Hence, the tests provide further support for the validity of Assumptions 3 and 4 of our
theoretical framework.
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colors are the best error-function fits. The green lines are the predicted performances for the two-
axes experiment given the one-axis results, and Assumptions 1 and 2 (Equation (3)). These lines are 
close to the two-axes-experiment blue lines. (C) Observed (blue lines in A and B) versus predicted 
(green lines) thresholds and sigmas (standard deviations) for the six subjects capable of detecting 
axes of symmetry. The solid lines are the best linear-regression results, while the dashed curves 
indicate the 95% confidence intervals. The regression yield results statistically indistinguishable 
from the (black) line, marking a perfect match between the results and predictions. Consequently, 
the results of panels A–C support the hypothesis that subjects detect symmetry in multi-axis exper-
iments by probability summation (Assumption 2). (D,E) Examples of subjects who prefer (D) and 
do not prefer (E) symmetry. The dots provide the mean preference data, while the solid lines with 
corresponding colors are the best fits of the model (Equation (5)). The parameters of the fits are 𝜃 =1 and 𝜌 = 0.766 for panel D, and 𝜃 = −1 and 𝜌 =  0.736 for panel E. (F) Chi-squared values of 
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threshold for p = 0.05 (𝜒  tests—dotted line), indicating that the model is indistinguishable from 
the data for every subject. 

Figure 5. Results of Experiment 3. (A,B) Examples of subjects able (A) and unable (B) to detect the
axes of symmetry. The dots provide the detection data, while the solid lines with corresponding
colors are the best error-function fits. The green lines are the predicted performances for the two-axes
experiment given the one-axis results, and Assumptions 1 and 2 (Equation (3)). These lines are close
to the two-axes-experiment blue lines. (C) Observed (blue lines in (A,B)) versus predicted (green
lines) thresholds and sigmas (standard deviations) for the six subjects capable of detecting axes of
symmetry. The solid lines are the best linear-regression results, while the dashed curves indicate
the 95% confidence intervals. The regression yield results statistically indistinguishable from the
(black) line, marking a perfect match between the results and predictions. Consequently, the results
of panels (A–C) support the hypothesis that subjects detect symmetry in multi-axis experiments by
probability summation (Assumption 2). (D,E) Examples of subjects who prefer (D) and do not prefer
(E) symmetry. The dots provide the mean preference data, while the solid lines with corresponding
colors are the best fits of the model (Equation (5)). The parameters of the fits are θ = 1 and ρ = 0.766
for panel (D), and θ = −1 and ρ = 0.736 for panel (E). (F) Chi-squared values of the fits for the
six subjects who could detect the axes of symmetry. These values are lower than the threshold for
p = 0.05 (χ2

24 tests—dotted line), indicating that the model is indistinguishable from the data for
every subject.
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4.2.3. Discussion

The results in Figure 5 provide a confirmation of the points raised by the theoretical
assumptions of our framework. These assumptions imply that some people like symmetry
while others do not so much. We can see in Figure 5D that for people who like symmetry,
their preference for the symmetric image increases as the symmetry signal in the image
increases. Additionally, the opposite occurs for people who dislike symmetry (Figure 5D).
These conclusions stand, regardless of whether our computational model (red and blue
lines) is right in detail. The same cannot be said for the probability summation results
(Figure 5A–C). The arguments for probability summation are quantitative, with the results
lending support to this.

4.3. Computational Model for Individual Observers
4.3.1. Rationale

By translating the assumptions raised in our theoretical framework into appropriate
equations, we have simulated observers of our experiments. With our assumptions, we
can explain many of the complex features in Figures 4 and 5. Some of the features on
the processing of axes of symmetry may be intuitive. For example, by presenting two
axes of symmetry instead of one, the probability of detecting at least one axis increases.
Therefore, if some people like symmetry, they increase the number of times that they like
images with axes of symmetry (Figures 4D,E and 5D). Similarly, if some people prefer
complexity, they increase the number of times that they like the images without axes of
symmetry (Figures 4D,E and 5E). If, instead, we compare images with one versus two axes,
the difference decreases (Figure 4C). This is because people may see at least one axis in both
images. Consequently, we can qualitatively account for the dependence on the number of
axes of symmetry. However, a quantitative analysis is necessary to make the details of this
dependence convincing. To quantify the explanations of Figures 4 and 5, we developed a
computational model based on the four assumptions of our theoretical framework. Here,
we begin the mathematical development with an eye to explain data like those in Figure 5.
In this model for testing the assumptions of the proposed theoretical framework, we shift
to Figure 4.

4.3.2. Fundamental Equations of the Model

The horizontal axes of Figure 5A,B are the proportion of dots creating symmetry. We
denote this by φ. The vertical axes are the proportion of times that a subject reports the
image with symmetry as having it. We denote this as Pr(α, φ), where α was the number of
axes of symmetry in the target image. To obtain the number of times that a subject reported
an axis of symmetry as having it, we multiply this quantity by the number of trials, Mr.

In Figure 5A,B, we modeled Pr(α, φ) as error functions of φ [43]. To probe Assumptions
1 and 2 of our theoretical framework, we compared Pr(2, φ) with its estimate from Pr(1, φ),
denoted P(e)

r (2, φ). This estimate was composed of those images for which the subject
detected the axis (with probability denoted by Pd(α, φ)) and half of those images for which
detection was not possible. Thus,

Pr(α, φ) = Pd(α, φ) +
1
2
(1− Pd(α, φ)). (1)

The choice of half in the second term of this equation was tested in our experiments. Because
they involved two alternative-forced choices, the only way that this choice would not hold
up was if the order of presentation mattered. However, we controlled for order and it did
not influence the responses. False alarms were also conceivable, possibly affecting the first
term of Equation (1). However, given the random nature of our images, we assumed that
such false alarms were rare and thus had a negligible effect.

From the probability summation, the connection between Pd(2, φ) and Pd(1, φ) is

Pd(2, φ) = 1− (1− Pd(1, φ))2. (2)
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In this equation, 1− Pd refers to the probability of failing to detect. The term is squared to
refer to the probability of failing to detect both axes. Therefore, the equation expresses the
probability that we do not fail to detect both axes, meaning the probability that we detect at
least one. By using Equations (1) and (2), and some algebra, we can eliminate Pd, obtaining

P(e)
r (2, φ) = 1− 2(1− Pr(1, φ))2. (3)

This is the equation that we used to estimate the green lines in Figure 5A,B.

4.3.3. Equations for Individual Preference of Symmetry

We now switch our attention to the preference results in Figure 5D,E. In these figures,
the vertical axes are the number of times a subject prefers the image with axes of symmetry.
We denote this number by MpPp(α, φ), where Mp is the number of trials, Pp is the proba-
bility of preferring the image with symmetry axes. To probe Assumptions 3 and 4 of our
theoretical framework, we compare the estimated P(e)

p (α, φ) with the preference data. This
estimate is again composed of the images for which the subject detects the axis and half of
the images for which detection is not possible. However, as expressed in Assumption 3, a
subject’s preference is not absolute. Our images are noisy, which means participants may be
detecting other shapes that they find more appealing than symmetrical axes. Alternatively,
their preferences may be noisy [44]. Consequently, if a subject detects symmetry and tends
to like it, the probability that the individual would pick the symmetrical image is less than
1. We denote this probability with the parameter 0.5 < ρ < 1. In turn, the parameter θ
denotes the tendency to like symmetry (θ = 1) or prefer the opposite image ( θ = −1). With
these parameters and assumptions in hand, we can write:

P(e)
p (α, φ : θ, ρ) =

1
2
(1− Pd(α, φ)) +

1 + θ

2
ρPd(α, φ) +

1− θ

2
(1− ρ)Pd(α, φ), (4)

where we use the notation f (x : k) to mean a function of x parametric on k. In this equa-
tion, the first term on the right-hand side captures the cases where the subject does not
detect the axis of symmetry. In turn, the second term applies for cases where the subject
detects an axis and likes it. Thus, θ = 1, making ((1 + θ)/2 = 1 and ((1− θ)/2 = 0).
Finally, the third term is for subjects that detect the axis of symmetry and dislike it, that is,
(1 + θ)/2 = 0 and ((1− θ)/2 = 1. Some algebra with Equation (4) and the application of
Equation (1) provides:

P(e)
p (α, φ : ρ) =

1
2
(1 + θ(2Pr(α, φ)− 1)(2ρ− 1)), (5)

This is the equation used to estimate the red and blue lines in Figure 5D,E.

4.3.4. Methods

We obtained the fit of the error functions to data similar to those in Figure 5A,B, for
each individual. These fits were separate for the one- and two-axes cases (red and blue
curves, respectively). We used robust regression for the fits [45], specifically the Nelder–Mead
algorithm [46], with the mean (threshold) and standard deviation (sigma) as free parameters.
We then tested the quality of these fits for each curve with χ2

65 tests. The number of degrees of
freedom was 65 because we had 6 individuals, with 13 data points per curve and 2 parameters
per individual. Then, we calculated the predicted two-axes reporting (Equation (3)—green
lines in Figure 5), testing it against the two-axes data (blue dots), also employing χ2

77 tests.
These tests had 77 degrees of freedom because they were parameter-free. Finally, we fitted
the predicted preference curves (Equation (5)—red and blue lines in Figure 5D,E). The fit
optimized the free parameter of the equation individually by minimizing χ2

g of the goodness

of fit of P(e)
p (α, φ : ρ) to the equivalent data from Experiment 3 (red and blue dots). The

measure χ2
g depends on the free parameter of P(e)

p , that is, it provides:
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χ2
g = χ2

g(ρ).

To find the optimal free parameter, we calculate:

ρ(opt) = argminρχ2
g. (6)

We perform the minimization specified in this equation with a coordinate descent algorithm [47].

4.3.5. Results

As mentioned in the analysis of Experiment 3, the error-function fits (red and blue
curves in Figure 5) were statistically indistinguishable from the data (similarly colored
dots). A similar conclusion held for the fits of Equation (3) (green curves and blue dots).
The parameters of the fits for the two-axes experiments appeared in Figure 5C. In turn, for
the one-axis experiments, the six fits yielded thresholds = (0.74, 0.87, 0.73, 0.71, 0.76, 0.66)
and sigma values = (0.30, 0.32, 0.27, 0.27, 0.21, 0.24) for subjects 1–6 in Figure 5F. Finally, the
respective optimal parameters of the fits of the green lines were θ = (1,−1, 1,−1, 1,−1)
and ρ = (0.51, 0.59, 0.77, 0.52, 0.74). That ρ < 1 is consistent with the second part of
Assumption 3 in our framework.

4.3.6. Discussion

The results in this section expand and support those of Experiment 3. Assumptions
1 and 2 of our theoretical framework not only account for the data qualitatively, but also
quantitatively. Thus, Pr(2, φ) and P(e)

r (2, φ) (Equation (3)) are statistically indistinguishable
(Figure 5A–C), in support of Assumptions 1 and 2. A similar result was obtained in relation
to Assumptions 3 and 4. In Figure 5D–F, we see that Pp(α, φ) and P(e)

p (α, φ) (Equation (5))
are statistically similar. The data in Experiment 3 also show a high degree of individuality.
People not only vary widely in their ability to detect axes of symmetry, but also in whether
and how much they like them.

4.4. Computational Model for the Population
4.4.1. Rationale

The computational model described above quantified the predictions of our theoretical
framework at the individual level. In this section, we modeled Experiment 2 to try to
quantify population aspects of the perception and preference of multiple axes of symmetry.
We thus aimed to validate the theoretical assumptions further by testing them against the
results in Figure 4.

4.4.2. Population Equations

We modeled Experiment 2 by running M simulations for each condition, with N
people in each simulation. Following Assumption 3 of our framework, let the mean fraction
of people who prefer symmetry versus complexity in the population be fs. Therefore,
the number of participants, n(s)

i , in the ith experiment who prefer symmetry follows the
binomial probability distribution:

P
(

n(s)
i : N, fs

)
=

(
N

n(s)
i

)
f

n(s)
i

s (1− fs)
N−n(s)

i . (7)

Assumption 3 also means that the number of participants who prefer complexity, n(c)
i , is:

n(c)
i = N − n(s)

i . (8)

To use Assumption 3, we must begin by specifying the probability that the jth par-
ticipant in the ith experiment detects the axis of symmetry when presented with just one
such axis. We do so by generalizing the notation of Pd in Equation (1) to Pj,i

d (α = 1). In this
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notation, we drop the φ parameter for concisiness because, in Experiment 2, φ = 1. With
this notation, Assumption 3 is captured by Equation (2) with the i and j indices included:

Pj,i
d (α) = 1−

(
1− Pj,i

d (1)
)α

(9)

To implement Assumptions 1 and 4, we must compare two images, with one with
at least one axis of symmetry and one without. Each subject performs this comparison
L times for each experiment. We thus introduce the notation Dj,i(α1, α2) to represent the
difference of the number of times that the jth participant in the ith experiment prefers the
image with α2 axes of symmetry versus α1 axes, where α1 < α2. To calculate Dj,i(α1, α2),
we must use Assumptions 1 and 4. From the latter assumption, if the participant fails to
see symmetry in a particular trial, the answer is random. Similarly, the answer is random
if the participant sees axes of symmetry in both images (Assumption 1). We approximate
those random answers as making no contribution to Dj,i(α1, α2), which is true on average.
Thus, the only contributions to Dj,i(α1, α2) come from seeing at least one axis of symmetry
in one image, but not in the other (Assumption 1; Equation (9)). The contributions are
positive if the subject prefers symmetry and sees an axis of symmetry for the image with α2
axes, but sees no symmetry in the other image. Contributions are negative for this subject
when seeing an axis of symmetry for the image with α1 axes, but no symmetry in the other
image. The signs of the contributions are inverted if the subject prefers complexity. We also
approximate these contributions with their average:

Dj,i(α1, α2) = L×


(

1− Pj,i
d (α1)

)
Pj,i

d (α2)− Pj,i
d (α1)

(
1− Pj,i

d (α2)
)

j > n(c)
j

Pj,i
d (α1)

(
1− Pj,i

d (α2)
)
−
(

1− Pj,i
d (α1)

)
Pj,i

d (α2) j ≤ n(c)
j

, (10)

where we obtain Pj,i
d (α) from Equation (9), n(c)

j from Equations (7) and (8), and 1− Pj,i
d (α)

represents failure of detection.
The only thing missing to specify the model fully is how to assign a value to Pj,i

d (1).
This value can be, in principle, any real number between 0 and 1. We thus looked for a low-
parametric, behaviorally rich, continuous, monotonic probability distribution supported on
a bounded interval. A good candidate was the continuous Bernoulli distribution [48]. This
distribution is a one-parameter exponential family used in probability theory, statistics, and
machine learning. Here, we used the distribution as follows:

P
(

Pj,i
d (1) : λ, ρ

)
= C(λ)λPj,i

d (1)/ρ(1− λ)1−Pj,i
d (1)/ρ, (11)

where 0 < λ < 1 is a constant parameter, 0 ≤ Pj,i
d (1)/ρ ≤ 1, and C(λ) is the normalization

constant of the distribution. Therefore, in our usage of the distribution, 0 ≤ Pj,i
d (1) ≤ ρ,

that is, the parameter ρ expresses a limit in the range of Pj,i
d (1). We chose ρ to be the limit

of Pj,i
d (1) because of the results in our first computational model. Those results show that

ρ < 1. This limit of ρ is consistent with the second part of Assumption 3 in our theoretical
framework. Because we obtained ρ through the fits from our first computational model,
this parameter was not free in fits involving Equation (11).

4.4.3. Methods of Computer Simulations

The model has two free parameters that we can optimize and five fixed parameters.
The free parameters are fs and λ. In turn, because we want to simulate the results of
Figure 4C–E, the fixed parameters had to include N = 25, α = {0, 1, 2}, and L = 60.
Moreover, parameter ρ is not free because we optimize it in our first computational model.
Here, we set ρ = 0.8 because this value is just higher the one that we have found in that
section. Smaller values of ρ found in that section are taken care of by this choice because
Pj,i

d (1) < ρ. Low Pj,i
d (1) correspond to a weak detection of axes of symmetry, which is
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exactly what small values of parameter ρ do. Another fixed parameter that is not part of
the optimization is the number of times that we repeat an experiment while keeping all the
parameters constant. This parameter is M = {1000, 10, 000, 30, 000}.

In the most basic simulations, we fixed the free parameters fs and λ, and calculated
Dj,i(0, 1), Dj,i(0, 2), and Dj,i(1, 2) to capture the outcomes in Figure 4C–E. The algorithm
for this calculation was as follows:

a. Sample n(s)
i from Equation (7).

b. Calculate n(c)
i from Equation (8) using the outcome from Step a.

c. Sample Pj,i
d (1) from Equation (11).

d. Calculate Pj,i
d (α1) and Pj,i

d (α2) from Equation (9) using the outcome from Step c.
e. Calculate Dj,i(α1, α2) from Equation (10) using the outcomes from Steps b and d.

Consequently, Dj,i(α1, α2) depends on the free parameters fs and λ, that is,

PDj,i(α1, α2) = Dj,i(α1, α2 : fs, λ), (12)

In the simulations, we optimized the free parameters under different conditions to cap-
ture the outcomes in Figure 4C–E. The optimization followed a strategy similar to that
of Equation (6). To do this, we measured the χ2

i of the goodness of fit of Dj,i(α1, α2)
(Equation (10)) to the equivalent data from Experiment 2 (Figure 4C–E), labeled Ej(α1, α2):

χ2
i = ∑N

j=0

(
Ej(0, 1)− Dj,i(0, 1)

)2

Dj,i(0, 1)
+

(
Ej(0, 2)− Dj,i(0, 2)

)2

Dj,i(0, 2)
+

(
Ej(1, 2)− Dj,i(1, 2)

)2

Dj,i(1, 2)
.

The measure χ2
i depends on the free parameters of Dj,i (Equation (12)), that is:

χ2
i = χ2

i ( fs, λ).

To find the optimal free parameter set, we calculated:(
f (opt)
s , λ(opt)

)
= argmin fs ,λmedi

(
χ2

i ( fs, λ)
)

, (13)

where medi represented the median of χ2
i for 1 ≤ i ≤ M. Equation (13) employed the

median because the distribution of χ2
i was not normal and, thus, we needed a robust

estimator. As for Equation (6), we performed the minimization specified in Equation (13)
with a coordinate descent algorithm. In some cases, we performed the optimization by
fixing one of the two free parameters and optimizing with respect to the other one.

Because we measured the χ2
i statistic, we could use a goodness of fit test for the null

hypothesis that the model fit the data by chance. The number of degrees of freedom for
this test was 3× N − 1− 2 = 72. The “2” in this equation was obtained from the number
of free parameters in the model (Equation (13)). Alternatively, we plotted the predictions of
the model against the experimental results, measuring the Pearson’s correlation coefficient.
We then tested the null hypothesis that the true correlation coefficient was equal to zero,
based on the value of the sample correlation coefficient.

4.4.4. Results

The results from Experiment 2 showed that people who like symmetry preferred
seeing two axes of it than just one. In turn, Experiment 1 demonstrated that seeing two axes
of symmetry required temporal integration. Therefore, the preference for multiple axes
of symmetry had to depend on the spatiotemporal integration of the image. The simplest
form of integration arose in the scanning of the image by saccades or shifts of visual
attention, possibly leading to a probability summation. The outcome of Experiment 3
supported this hypothesis for individual observers, supporting a model compatible with
the assumptions in our theoretical framework. Here, we wanted to extend this model to
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quantify its parameters in the population (Equations (7)–(11)). The results of this extension
appear in Figure 6.
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Figure 6. Results of the simulations with a population computational Model. (A–C) Graphical
representation of individual differences in symmetry preference. These panels correspond and have
the same conventions as (D,E) in Figure 4. We obtained these panels for the optimal model in the χ2

sense with 30,000 simulations. (D) Experimental versus model-predicted differences for the same
optimal model and in Panels (A–C). (E) Pearson’s correlation coefficients for the best χ2 model over
1000 simulations. (F) Median χ2 over 30,000 simulations for the general optimal parameters (first bin),
optimal parameters with fs = 1/2 (second bin), and optimal parameters with λ = 1/2 (third bin).
These plots indicate that the proposed computational model provides an excellent fit to the data.

Figure 6 shows that the computational model can provide good fits to the popula-
tion data. A comparison of Figure 6A–C with Figure 4C–E shows a strong qualitative
resemblance between model behavior and data. For example, take the images compared
in Figure 6A,B. Although these images had the same difference in the number of axes
of symmetry (one versus zero or two versus one), preferences were strong for Figure 6B,
but weak for Figure 6A. In another example, adding one axis of symmetry increased the
strength of preference (compare Figure 6C with Figure 6B). However, the preference did
not just increase for symmetry. Those people who “disliked” symmetry became even more
biased against it in both data (Figure 4) and model (Figure 6).

The goodness of fit of the model was not just limited to qualitative aspects. For
example, Figure 6D plots the experimental results against the predictions of the model for
the optimal fit in the χ2 sense with 30,000 simulations using the optimal parameters. The
optimal parameters were fs = 0.58 and λ = 0.094. With these parameters, the optimal fit
was good as judged by the proximity of the points to the line of a slope of 1 and intercept
of 0. Indeed, the fit was indistinguishable from the data using the χ2 goodness-of-fit test.
The Pearson’s correlation coefficient of the plot was also high (r = 0.946) and unlikely
to increase by chance from a distribution with a zero correlation (p < 0.01). Finally, the
correlation was high and the fit good for each of the individual conditions separately
(Figure 6D).

Importantly, the goodness of the model fit was not limited to the optimal simu-
lation in the χ2 sense. Figure 6E shows the Pearson’s correlation coefficients for a se-
quence of 1000 simulations using the optimal parameters. As the figure reveals, none
of the correlation coefficients are less than 0.85. The median correlation coefficient over
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these 1000 simulations is 0.9232± 0.0004 (standard error). Over the 30,000 simulations,
most fits are undistinguishable from the data using the χ2 goodness-of-fit test. Of these
30,000 simulations, only 14.4% can be distinguished from the data with this test at the
p < 0.001 level.

4.4.5. Discussion

With such a good model, we reach two conclusions: first, as mentioned above, the
optimal parameters of the model include fs = 0.58. This optimal parameter suggests that
more people (60%± 10%) prefer symmetry over complexity. (This ±10% estimate comes
from the binomial distribution with N = 25 and p = 0.6). To test this suggestion further,
we optimize the parameters again, but by constraining fs = 1/2. The results in Figure 6F
show that the fit is significantly better if we allow fs > 1/2 (compare the two first bins
in the figure). Our sample is too small to rule out fs = 1/2; however, the data do indeed
provide evidence that more people prefer symmetry to complexity. Second, the optimal
parameters include λ = 0.094, which, by plotting Equation (11), yields a monotonically
declining P

(
Pj,i

d (1) : λ, ρ
)

. This decline suggests that more people have difficulty detecting
an axis than can find it with ease in our images. This suggestion is strongly supported
by the results of Experiment 3 (Figure 5). To test this suggestion further, we optimize
the parameters again, but by constraining λ = 1/2. With λ, P

(
Pj,i

d (1) : λ, ρ
)

is a uniform
distribution. The results in Figure 6F show that the fit is significantly better if we allow
λ < 1/2 (compare the first and third bins in the figure). Again, our sample is too small
to rule out λ = 1/2; however, the data show that detecting an axis of symmetry with our
images is difficult.

Despite its good quality, the model is not perfect. For example, an analysis of Figure 6F
shows that the optimal fit in the χ2 sense may yield a slightly larger-than-one slope for
the zero-versus-one condition (red dots). In addition, the Pearson’s correlation coefficients
are not as high for the one-versus-two condition (median r = 0.7610± 0.0002). For the
other conditions, these coefficients are above 0.9 (zero-vs-one median r = 0.9245± 0.0001;
zero-versus-two median r = 0.9570± 0.0001). Furthermore, none of the differences for the
one-versus-two condition crossed the statistical threshold in Figure 6A. However, these
statistical deficiencies are minor and have simple explanations. For example, the range of
values for the one-versus-two condition is small (green dots in Figure 6D), making their
correlation coefficients more sensitive to noise. Consequently, overall, the model provided
a good fit to the population data, allowing us to explore their meanings more thoroughly.

5. General Discussion
5.1. Time Required for the Detection of Multiple Axes of Symmetry

Our experiments suggest that time has a significant effect on symmetry detection.
While participants cannot detect multiple embedded axes of symmetry at 300 milliseconds,
they can detect them at a 1 s interval. Thus, detecting multiple axes of symmetry takes
time, and our results suggest that slower mechanisms are responsible for this detection.
One of these possible explanatory mechanisms is eye movement, especially, saccades. The
time between stimulus presentation and the onset of a saccadic movement is thought
to be, on average, 200 milliseconds [36]. Our results indicate that participants may be
shifting their gaze, and this is what may be allowing them to detect multiple axes of
symmetry at longer intervals. Another possible explanatory long-interval mechanism is a
shift in visual attention. The latency of visual attention is thought to be between 140 and
240 milliseconds [37]. Again, our results suggest that participants may be shifting their
visual attention to detect multiple vertical axes of symmetry embedded in noise. Moreover,
because the detection of multiple axes appears to depend on slower mechanisms scanning
the image, our results support the neuroscientific claims that extrastriate brain areas mediate
the perception of symmetry. These are areas with large receptive fields [21,22].
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5.2. Why People like Multiple Axes of Symmetry

Because the detection of multiple axes of symmetry required a long temporal integra-
tion, we initially hypothesized that they would not have a positive effect on preference.
The rationale for this hypothesis was the simplest application of the processing fluency
theory [7,29]. However, our data did not support this hypothesis. We saw two possible
explanations for why our data showed an effect of multiple axes of symmetry on preference
through temporal integration. One possible explanation could be the temporal integration
of symmetry value. For example, imagine that participants detected one axis and assigned
it a value rating. Upon detecting a second axis (potentially through an eye shift or a
shift in attention), they assigned to that axis another value rating. This new value rating
would then be integrated with the first value rating, and the accumulation of value would
determine their preference response. Therefore, the time course of preference accumulation
would have to be longer than the time it took to detect a second axis after having detected
one. However, this accumulation should be sublinear as a function of the number of axes
because a biased preference was reduced for the two-versus-one condition when compared
to the zero-versus-one alternative. If the accumulation was instead proportional to the
number of axes, then the two conditions should have yielded similar results.

Another explanation for the effect of multiple axes of symmetry on preference through
temporal integration is probability summation [44]. Thus, the scanning performed by
saccades or shifts of attention would be used to try to detect at least one axis of symme-
try. If finding one axis is enough, this would explain the weak preference bias for the
one-versus-two condition compared to the zero-versus-one condition. In the former, at
least one axis of symmetry could be found in both images, eliminating the preference bias
when that occurred. This process is probability summation because it uses the probabil-
ity of detecting at least on axis when several are present. This probability-summation
process is the basis of the computational model proposed in this article. The success of
this model suggests that the brain employs such a process when dealing with multiple
axes of symmetry. Interestingly, the model is compatible with the processing fluency the-
ory. Although detecting multiple axes of symmetry takes time, detecting a single axis is
quick [12,24,49] and has dedicated cortical circuitry [13–15].

5.3. Do People Always Prefer Symmetry?

However, we did not obtain a statistically significant preference of one-over-zero axes
of symmetry. This statistical failure occurred even if the opposite held for the two-over-zero
(and two-over-one) axes of symmetry. The apparent neutrality of the one-over-zero case
went against the research suggesting that people preferred symmetry over asymmetry [1,3].
We conceive three factors that may have contributed to the statistical neutrality of the
one-over-zero cases and its absence in two-over-zero situations. First, both saliency and
attention affect the preference for symmetry in abstract patterns. The saliency of symmetry
in abstract patterns is positively correlated with preference [50,51]. However, in some
cases, abstract symmetrical patterns are associated with a positive affect only when the
task involves symmetry detection [49]. In our experiments, images with two embedded
axes (as opposed to one) doubled the probability of participants detecting one of them, and
therefore possibly preferring the stimuli. Second, statistics may have contributed to the
apparent neutrality of the one-over-zero case. The pattern of preference was consistent
for individual participants when comparing both the difference between zero and one
and zero and two axes (Figure 4F–H). Thus, having two axes might have increased the
magnitude of the effect to the point of statistical significance. Third, while some people
preferred symmetrical images over more complex ones, others liked the opposite. This
surprising split of preference for symmetry was strongly supported by data, such as
those in Figure 5D,E. Hence, as a population, people are split into these two categories of
preference. This split reduces the mean strength of preference for images with single axes
of symmetry. The findings of our computational model lend credibility to the second and
third explanations above.
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A key finding of our results is the role of individuality in aesthetic preference. Studies
on symmetry preference tend to average across participants. Our study shows that, as
a population, people prefer symmetry over complexity. However, our results show a
distinction between individuals when it comes to symmetry and complexity preferences.
Some people significantly like symmetry over complexity and others prefer the opposite
(Figure 5D,E). Based on the optimal fit of our computational model, 15 ± 2.4 participants
(60± 10%) are in the symmetry-preferring category, while 10 ± 2.4 (40± 10%) are in the
second. The model also reveals another important source of individuality. The optimal
parameter related to detectability of an axis of symmetry, λ, suggests strong individuality in
the ease to detect symmetry. Thus, the detectability of symmetry varies across individuals,
affecting their preferences. These results support the notion that individual differences
in aesthetic preferences cannot be ignored, highlighting the limits of generalizing about
aesthetic preferences based on group means [52].
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